Select Page

Q: sql statement with only one to many? This is my table id int(10) NOT NULL AUTO_INCREMENT, name varchar(100) NOT NULL, lastname varchar(100) NOT NULL, credit varchar(50) DEFAULT NULL, email varchar(50) DEFAULT NULL, mobile varchar(50) DEFAULT NULL, website varchar(50) DEFAULT NULL, adress varchar(200) DEFAULT NULL, zipcode varchar(50) DEFAULT NULL, city varchar(200) DEFAULT NULL, place varchar(200) DEFAULT NULL, country varchar(200) DEFAULT NULL, specials text, value1 int(11) NOT NULL DEFAULT ‘0’, value2 int(11) NOT NULL DEFAULT ‘0’, value3 int(11) NOT NULL DEFAULT ‘0’, value4 int(11) NOT NULL DEFAULT ‘0’, value5 int(11) NOT NULL DEFAULT ‘0’, value6 int(11) NOT NULL DEFAULT ‘0’, value7 int(11) NOT NULL DEFAULT ‘0’, value8 int(11) NOT NULL DEFAULT ‘0’, value9 int(11) NOT NULL DEFAULT ‘0’, value10 int(11) NOT NULL DEFAULT ‘0’, value11 int(11) NOT NULL DEFAULT ‘0’, value12 int(11) NOT NULL DEFAULT ‘0’, value13 int(11) NOT NULL DEFAULT ‘0’, value14 int(11) NOT NULL DEFAULT ‘0’, value15 int(11) NOT NULL DEFAULT ‘0’, value16 int(11) NOT NULL DEFAULT ‘0’, value17 int(11) NOT NULL DEFAULT ‘0’, value18 int(11

Q: Differential Manifold I am trying to understand the definition of Differential manifolds (say k-forms on a topological k-space of differentiable functions). We say that a differential manifold is a triplet (M, d, Ω) where M = M^k is a differentiable n-dimensional manifold, d : M→ M^k is a differentiable function of class $C^r$ ($r\geq k$) and Ω : M^k → C is a differentiable function of class $C^r$. In this definition, I have two questions: Is it possible to choose a coordinate-free definition of differential manifolds? (how to avoid using charts and local coordinates?) What does it mean that $\Omega : M^k → C$? does it refer to a singular function? And what does it mean the class of $\Omega$? A: One way to avoid coordinates is to consider a principal bundle $P\to M$, whose sections are pairs $(p,v)$, where $p\in P$ and $v\in T_pP$, for any choice of point $p\in P$, and $\Omega$ is a map $\Omega:\Gamma(P)\to C$, where $\Gamma(P)$ is the space of sections of $P$. If $M$ is a vector space, then this is just like it sounds, but if $M$ isn’t, then this doesn’t have the right transformation laws. Another way to put this is that a chart for $(M,\Omega)$ can be taken to be a principal $C^\infty(M)$-bundle $P\to M$ and a map $\alpha:U\to C$, such that $\Omega$ is just the map $\alpha\circ \rho:P\to C$, where $\rho$ is the projection $\rho:P\to M$. This won’t be coordinate-free, but it’s conceptually cleaner to me. Q: Change variable type from int to float c# I have the following scenario: I have a class A and I’ve been created a list of objects of class B, but instead of class B it has a list of class A. Now I want to change the